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AMtraet--Slow flow through a periodic array of spheres is studied theoretically, and the drag force by the fluid 
on a sphere forming the periodic array is calculated using a modification of the method developed by Hashimoto 
(1959). Results for the complete range of volume fraction c of spheres are given for simple cubic, body-centered 
cubic, and face-centered cubic arrays and these agree well with the corresponding values reported by previous 
investigators. Also, series expansions for the drag force to 0(cm°) are derived for each of these cubic arrays. The 
method is also applied to determine the drag force to 0(c 3) on infinitely long cylinders in square and hexagonal 
arrays. 

1. INTRODUCTION 

Slow flows of incompressible Newtonian fluids through an array of fixed particles occur in 
many physical processes and therefore their study is important from both the practical and the 
theoretical point of view. We consider an idealized case in which the particles are equal-sized 
spheres of radius a* arranged in periodic arrays and assume that the Reynolds number of the 
flow is much smaller than unity so that the fluid motion satisfies the well known Stokes 
equations of motion. Our primary goal here is to calculate the drag force F exerted by the fluid 
moving with average speed U on a representative sphere in the assembly as a function of the 
volume fraction c of the spheres. In addition, though, the method of solution to be developed 
yields expressions for the local velocity and the pressure fields. 

Hasimoto (1959) was probably the first to successfully treat the case of dilute arrays (c ,~ 1). 
He derived the periodic fundamental solution to the Stokes equations of motion and, after 
expanding the velocity profile in terms of this fundamental solution and its derivatives, obtained 
an expression for F for the three cubic arrays (simple, body-centered and face-centered). For 
the simple cubic array he found that 

K -~ = 1 - 1.7601 C1/3"~ - C -  1.5593 C2 + 0(C8/3), [1] 

F 
where K = 61rlxUa*' [2] 

and ~ is the viscosity of the fluid. Clearly, [1] is meaningless for c beyond approximately 0.2 
when K becomes negative. Hasimoto's results for body-centered and face-centered arrays are 
also quantitatively similar to [1]. Although in principle, it should have been possible to calculate 
additional terms in [1] using Hasimoto's method, this does not appear to have been done to 
date. 

In this paper, we modify Hasimoto's treatment and calculate K over the complete range of c 
for all three of the cubic arrays. We find first of all that the expression for the velocity given by 
Hasimoto is incomplete and that the extra terms affect the coefficients of [1] to 0(c ~°/3) and 
beyond. On using the complete representation for the velocity we then derive an expression for 
K to 0(c ~°) which appears to converge for 0 <  £/¢max < 0 . 8 5 ,  where Cmax is the maximum 
concentration of spheres for a given packing and equals ~r/6, V'37r/8, and X/2¢r]6, respectively 
for a simple cubic, a body-centered cubic and a face-centered cubic array. For 0.85 < C]Cmax < 1 
the drag is obtained, as explained in section 3, by a "direct substitution" evaluation of the 
linear equations relating the coefficients of the formal solution. 
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Recently, Zick & Homsy (1982) also computed the drag on a sphere in the above three cubic 
arrays. Using Hasimoto's (1959) fundamental solution, they obtained a set of integral equations 
for the unknown stress vector at the surface of a sphere which they then solved numerically. 
Our results are in good agreement with theirs--as well as with Sorensen & Stewart's (1974) 
value for touching spheres in a simple cubic array. 

We also consider the slow flow through periodic arrays of infinitely long circular cylinders. 
For the square array Hasimoto (1959) obtained 

F' = 1 (3) 
47rtzU 1 - ~ lnc - 0.738 + c + 0(c 2) 

where F' is the magnitude of the drag force exerted by the fluid per unit length of a cylinder. 
We have extended Hasimoto's method and have calculated F'/41zU to 0(c 3) for square and 
hexagonal arrays. For c < 0.25 the series give results which are in excellent agreement with 
those obtained by the present authors (Sangani & Acrivos 1982a) using a numerical method 
which is similar to Galerkin's method. 

The procedure to be described here for solving the creeping flow equations in periodic 
arrays can also be easily extended and applied to the problem of calculating the effective elastic 
moduli of composite materials which consists of cubic arrangements of spherical particles 
embedded in an isotropic matrix with different elastic properties. The analogous case of 
determining the effective thermal conductivity in periodic array of spheres has also been treated 
in detail by the present authors (Sangani & Acrivos 1982b). 

2. THE FORMAL SOLUTION FOR THE SLOW FLOW IN A CUBIC ARRAY OF SPHERES 
2.1 Governing equations 

Let us consider the steady motion of a viscous fluid through an array of spheres whose 
centers are located at 

r~ = h(nlam+ n2a(2)+ n3a(3)) (nl, r/2, n3 =0,-+ 1, -+2 . . . .  ), (4) 

where a m, a(2) and] a(3) are the basic vectors determining the unit cell of the array and their 
components for the three cubic arrays are listed in appendix 1. Since our analysis is restricted 
to cubic arrays, we assume, without loss of generality, that the mean flow is along the &-axis. 
As mentioned in the introduction, we take the Reynolds number of the flow to be very small so 
that the fluid velocity satisfies the Stokes equations of motion and the continuity equation 

i 02 02 ~2 ) 
t,a,,, = ~  =e-LT+e-7?+e-~7 , ~51 

aui = 0, [61 
axi 

where p is the pressure and ui is the velocity of the fluid at the point (xt, xz, x3). Because of the 
periodicity and the symmetry of the system, our solution must satisfy the conditions (Sorensen 

& Stewart 1974) 

u l ( x l ,  x >  x3)  = u~(x , ,  - x2,  x~)  = u , (x~ ,  x2,  - x3) = u~( - x , ,  x2, x3) 

u2(x~,  x2,  x3)  = - u2(x~,  - x2,  x3)  = u2(x~,  x2,  - x3)  = - u2( - x , ,  x2 ,  x O  

u3(x~,  x2,  x3)  = u 3 ( x b  - x~, x3)  = - u 3 ( x , ,  x2, - x3) = - u 3 ( -  x , ,  x2, x3) 

[71 

[8] 

[91 
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U2(Xl, X 2 , / 3 )  = U3(XI'  X3' X2) 

ul(x~, x2, x3) = ul(x~, x3, x2) 

345 

[10] 

[11] 

u(r + rO = u(r) [12] 

u = 0 on sphere, [13] 

where [13] refers to the no-slip boundary condition at the surface of the spheres and u~, u2 and 
u3 are the components of the velocity along the x~, x2 and x3 axes, respectively. As mentioned in 
the introduction, we shall follow Hasimoto's treatment in order to solve [5]-[6] subject to the 
conditions [7]-[13]. Before starting our calculation we non-dimensionalize the distances with h, 
the components of velocity with U and the pressure with ~U/h. 

2.2 The formal solution 
A periodic fundamental solution (vt, q) to the creeping flow equations can be obtained by 

solving 

(14) Avi=~x + 8~j ~.~ " 8( r -  r~), 

av__~ = 0, (15) 
o~xi 

where 8(r-r~) is Dirac's delta function defined 

f ,  {~ when r , E ~  
8 ( r -  r.) dr = when r. ~ ¢' 

and 

(16) 

(17) 8 ( r -  r.) = 0 for r ++ r.. 

As shown by Hasimoto (1959) 

z / o  ~ a~s2 
v, = ~oSiJ - ~ - ~  ,,l~i, - ~ /  (18) 

Oq=_Si~.~ 02S~ (19) 
axi Zo ax~axi' 

where r0 is the non-dimensional volume of the unit cell which equals the triple scalar product of 
the basic vectors, i.e. 

'ro = ih l ) "  [a¢2) X ao ) ] .  [20] 

Also, S, and $2 in the above equations are given by 

where 

[211 
e -2~/(ks" r) - -  I e -2m(l~ - r) 

S I --  71P.r0 

= n,b+u + n2br2~ + n3b+31 [22] 
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are vectors in the reciprocal lattice given by 

k. .  ati~ = ni (i = 1,2, 3). [23] 

The reciprocal lattice vectors b,) (i = 1,2, 3) for simple, body-centered, and face-centered 
cubic arrays are given in appendix 1. Further, as shown by Hasimoto, St and $2 are solutions of 

and 

AS2 = St [241 

[251 

It is important to note that the derivatives of St are harmonic functions and therefore 
automatically satisfy the homogeneous part of [5]. To obtain a completely general solution to ui, 
we add to the fundamental solution vi, the derivatives of v~ and SI multiplied by some unknown 
coefficients. From this sum we omit those terms which do not meet any of the conditions 
[5]-[11] listed in Section 2.1, and thus arrive at the following expressions for the components of 
the velocity and for the pressure: 

1 {G(S ' a2Sz~.uaZS, . a' a' a4 \S ,  } 
u,=Vo-~-~ - ~x-~ ] ~- n ~-~-12 - ~, (0x--~2 - 6 ~ + 0~34) [26] 

l {G a2Sz . a2S, a [ a  3 _ a 3 kS, } 
[271 

t~ 3 

u 3 = ~ t  ax, ax3 ~ -  ax~ [281 

Op_ 6rraKsil+ I_Lt, O2SI ( a*) 
Oxi ro 47r-  Oxl Oxi a =-h-- ' [29] 

where G, It and L are the differential operators 

B.m [0x2.1.\0s¢ ' +(-ff-~)11 (M=n+2m,  
M = 0  m =0 Cnm 

[301 

with 

= X 2 "Jr- /X3, '0 = X2 -- ix3, [31 ] 

and where the unknown coefficients A.,., B.,., and 6'.,. are to be determined by applying the 
no-slip boundary condition [13] at the surface of the spheres. The above expressions for the 
components of the velocity differ from those given by Hasimoto (1959) in two important 
aspects. First, the terms containing the differential operator L are absent in Hasimoto's 
solution. As we shall see presently, if these terms are omitted, the number of equations exceed 
the number of unknowns. Second, the differential operators defined by [30] are a special form 
of those given by Hasimoto. As discussed by the present authors (1982b) in their calculation of 
the effective thermal conductivity of composite materials, [30] is the most convenient represen- 
tation of these differential operators when dealing with problems involving cubic arrays of 

spheres. 
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Since it has been shown by Hasimoto (1959) that 

Aoo = 3~raK, Uo = 1 + 2 Boo, [32] 
~'o 

the evaluation of Aoo directly yields K. 
We now proceed to determine the constants A~,~, Bnra and Cnm. 

3. AN EXPRESSION FOR K -1 TO 0(c 1°/3) 

In this section we shall illustrate the procedure used by Hasimoto (1959) to determine the 
unknown constants in [30] and simultaneously obtain an expression for K -~ to 0(ct°13). 

Since the solution for the velocity components given by [26]-[28] is periodic, the no-slip 
boundary condition on the surface of each sphere is satisfied automatically if it is satisfied on 
surface of a sphere with its center at the origin. Accordingly, we concentrate on the unit cell 
containing the origin and make use of the expansions of S~ and $2 in spherical harmonics near 
r = 0 given by Hasimoto (1959). 

where 

with 

~ _  ~o m~nl2 4m 
S, = 1_ 6 + fl + ~ ~, anm Y2n (Xl, x2, x3) [33] 

r 3~'o n~2 m=O 

= r  _ ~ 7rr 4 m~/2 
$2 ~ -  C2-~ r ' +  3-~o+ n=2 m=O 

- 4m (brim + anm r2) Y2n (xl, x2, x3), 

gnm(Xl, x2, x3)= rnpn m (cos0) cosm~b, 

xl = r cos O, x2 = r sin 0 cos ~b, x3 = r sin 0 sin ~, 

[34] 

[35] 

[36] 

and ~, ~2, anm, b~m and d~,, are constants characteristic of the array. Not all of them are 
independent. Thus as shown by Hasimoto (1959) 

1 
anm : 2(4n + 3) [37] 

and as shown by Zuzowski (1976), 

a2o= b20 = a30 b30 
a2! b21 168; . . . . .  360. [38] a31 b31 

The constants ~, anm and bnm for the three cubic arrays are evaluated in appendix 1. 
Substituting [30], [33] and [34] into [26]-[28] and using the equations of appendix 2, 

[A.23]-[A.33], we obtain expressions for the components of the velocity in terms of Legendre 
polynomials. By equating to zero the coefficients for r = a of Po, /'2, /'4 and P44 in ul and 
P2 ~ e ~, P4 ~ e ~* and P43 e -3i* in u2 + iu3 we arrive at 

4 [ l _6a+  2~r 3 ] -  161r_ r16~- 8a2oa2]Alo j + L1-  o- 48b - 

8! 
+ 48 a2oBlo " 4 8 1 4  a2o + 30 63o + O( a2) ] A2o + T~ [ ~ll a21- 90b31 

+ 0(a2)]Aol - 8[a21 Coo + 0(a 12) = 4~r [39] 
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[ 2 - ( ~ o  + 24b2o) a2-~-a2oa4]Aoo+ 4[ l~a +6azoaZ]Boo 

13 +[74-~a -(-~a2o+6,b3o) a2+O(a4)]A,o+O(a'°)=O [40] 

a ,1"7617.ff a2o - b0"̂ b 30 q" t~%'l 2"~ ] l J l ~  u )'J Aoo+[~--~4a+O(a4)]alo+[4~a8+O(a4)]B,o+O(a 7 ) = 0 [41] 

a4120[H a21 - 180 b31 +O(a2)]Aoo+[8-~-3+O(a)]aol-[2a-7;+O(a4)]Coo+O(aT)=olO 4 [42] 

[--~a-8(4-~zo-b2o)a2+~a2oa4] Aoo+ 2[ l~a -Sa2azo]Boo 

-[76-~a- (~1 a2o+ 240b3o) aZ+O(a4)]Alo+O(al°)=O [43] 

_ 1 _ f 120 0(a4)]A2o a'[12b3o ~a2o+O(a:)Jaoo+[76-~a+O(a4)]a,o [1--i~a + 

+ 

a21 

+ 0 ( a  7) = 0. [45] 

Comparing the leading order terms in these equations (when a ~ 1) we see that, at most. 

A.,. ~ 0(a4M+2). B.,. - 0(a4M+4), C.m ~ 0(a4M+8), 

Aoo - 0(a). Boo - 0(a3). [46] 

Solving [39]-[45] for Aoo, we obtain 

+ 4¢ra3 16¢r 2 K -~= 1-~a -~o-(4-~zo+630b~o)a6-300a2ob2oa 8 

-(2~--~2 a22o+ 27180 b~o)a'°+O(aH), [47] 

which agrees to 0(a 6) with Hasimoto's (1959) corresponding expression. The above series for 
K -~ can also be recast in terms of the volume fraction of the spheres 

4~-0 3 
c -  3zo" 

For a simple cubic array, [47] reduces to 

K -~ = 1 - 1.7601 c ~j3 + c - 1.5593 c 2 + 3.9799 c 8/3- 3.0734 c 1°/3 

[~] 

+ 0 ( c  I I/3), [ 49 ]  



SLOW FLOW THROUGH A PERIODIC ARRAYS OF SPHERES 349 

I I I I 1 

40 I 
/ 

i 

3O 

2O 

/ / /  

/ ,2,/ 
,o , ~ /  

I I I ] I 
0 0 2  0 4  

c 

Figure I. The non-dimensional drag K as a function of the volume fraction c for simple cubic arrays 
[--exact results,---[21,-----[49]]. 

which, as can be seen in figure 1, is an improvement over Hasimoto's result [1]. The solid curve 
in that figure represents the numerical results to be discussed in the next section. It should be 
noted though that the good agreement between [49] and the exact results in figure I, is only 
coincidental and that many more terms would be needed to establish the radius of convergence 
of the above series for K -l. 

The process just described for generating the higher order terms in K -~ can be continued 
indefinitely, at least in principle. In the above example, the coefficients of those terms in Ul and 
//2 + ///3 which are multiplied by Legendre polynomials of degree 4 or less were equated to zero, 
but it can be shown that if the no-slip boundary condition is satisfied by including all Legendre 
polynomials of degree 4N + 2 or less, then 3(N + 1) 2 equations (N 2 + 3N + 2 in Ul and 2N 2 + 3N + 
1 in u2 + iu3) result. Further, on account of (46), K -~ can be determined to 0(a 8/~+7) and only 
3(N + 1) 2 number of unknowns [A,,~ :(N + 2)(N + 1), B,m :(N + 1) 2, C,m : N(N + 1)] can con- 
tribute up to this order of approximation in K-L Thus the number of unknowns equals the 
number of equations. In Hasimoto's expressions for the velocity, the unknowns C,m were 
absent and thus the number of unknowns were N(N+ 1) short of the number of equations. 
However, since Hasimoto considered terms only up to N = 0 his results are unaffected. 

In order to proceed with our calculations, we first arrange all the unknown coefficients in a 
vector U, i.e. 

U -= I AOO' Aio, A2o, Aot," . . . . .  , Am, Boo, Blo, B2o,. . . . . .  , BoN 

N 2 + 3 N + 2  (N+  1) 2 

Coo, Cio;"" i . . . .  , CI.N-I]. [50] J N2+ N 

Next, we see from [39]-[45] that the equations that result by equating to zero the coefficients 
of Po °, x2 ~ o,...~4N+2~4~ in Ul (which correspond below to the equations given by i = 1,2,...,  
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,ai,Ya D 4 N + I  e i(4N+~l~ in u2 + iu3 (equations given below by i = N 2 + N:  + 3N + 2) and P2 l, P4 I, ~. ,"'~4N+2 
3N + 3,. • • 3(N + 1) 2) can be represented by 

3(N+D 2 

{(TIj + T~ i a 2) + (T]j + T] i a 2) a 2p(i)+l} Uj = 4¢ra6,,, 
j=l 

[511 

where the first few coefficients of the matrices _T I, _T 2, _T 3 and _T 4 were already calculated in 

[39-[45]. Thus 

2 4 Tt~ =~ 6i,, T~, =0. T~2=~ , " '  [52] 

T~ i=O, T~j=]~s,, T~ i= , - . .  [53] 

T~I 2(  T~2- 16~" 
= - - 3 - '  1--5~o 48 b2o," ' • [54] 

= _ _  132 
T4 4rr T22 = -  176620, T41 = - ~ - -  d 2 o , " '  [55] 

9T0'  

Also p(i) in [51] is the degree of the Legendre polynomial whose coefficient when equated to 
zero led to the ith equation. Thus, 

p(1) = 0, p(2) = 2, p ( N  2 + 3N + 3) = 2, p(3N 2 + 6N + 3) = 4 N  + 2, etc. [56] 

A computer program can therefore be written to calculate p(i) and the coefficients of the 
above matrices. 

As discussed by the present authors (1982b), the equations resulting from applying the 
boundary conditions at the surface of a sphere can be solved in either of two ways. The first is a 

method of successive approximations which generates a series expansion in powers of a- - the  
series method. The second involves determining the constants (A,,,, B,m, and C,m in the 

present case) by matrix inversion for a given value of a - - the  direct substitution method. We 

describe here both methods. 
In the series method, we expand the constants in power series of a, i.e. we let 

8N+7 

~-= Y. ~"a ~. [571 

Substituting [57] into [51] yields the following recursion formula 

S S 
uik = ~ .  ~ T~'  {4,r6;,6i, - -,J~'s T2 Ha-2 - - i j~ ' i  T3 H k-2p"'-' 

i=1 j=t 

_ T~/s Ujk 2p(i) 3} (S = 3(N + l)2), [58] 

where U~ = 0 for k -< 0 and T -1 is an inverse of T t, i.e. 

S 
X - I  1 Tti Tij = 6ti. [59] 
i=1 

Since all the quantities on the r.h.s, of [58] are known or have been previously calculated, 
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series expansions for all the unknowns can be readily obtained from [58]. In particular, since 
AGo = 3~raK, the series for A0o directly gives the asymptotic expansion for K. 

In the case of the direct substitution method, [51] are solved directly for selected values of 
a. Note that in this method even the terms higher than 0(a s~+?) are retained in these equations. 

4. RESULTS 

Simple cubic arrays 
Listed in table 1 are the coefficients in the series expansion 

3O 

r = ~ ,  q,x*, [60] 
$=0 

where 

g = (C/Cmax) 1/3 [61] 

with Cmax, the volume fraction of the spheres in the touching configuration, equal to ¢r/6 = 

0.5236 for the simple cubic array. We see that the above series fails to give an accurate result 
for K when X is close to unity. Indeed, for X = 1, K increases monotonically to about 39 as the 
terms in the series [60] are added successively after which it oscillates between 33 and 56. We 
have tried several of the standard techniques (Van Dyke 1964) for improving the rate of 
convergence of this series but without success. 

On the other hand, the calculation of K via the direct substitution method converged very 
rapidly as seen in table 2 where values of K for various N and X are given. The converged 
values of K as a function of X are listed in table 3 where they are compared with those from the 
series solution [60]. We see that they are in agreement to within 1% for X < 0.95. 

As mentioned in the introduction, Zick & Homsy (1982) also calculated K for all the three 
cubic arrays over the complete range of c. Our results from the direct substitution method are 
in agreement with theirs to within 0.5%. Our results are similarly in agreement with Sorensen 
& Stewart's (1974) who found K 42.6 for X = 1 using a three-dimensional set of stream 

Table 1. The coefficients el, in [60] 
S SC BCC FCC 

0 0 .1CO0000D+Ot  O. IO00000D+01 O. ICO0000D+OI 
1 0,1418~49D+01 011575~34D+01 011~0~94D+01 

O. RO12564D+01 0.2483254D+01 0.~7620D+01 
3 0.2331523D+01 0.3233022D+01 0.3518875D+01 
4 0.2564809D+01 0.4022864D÷01 0.4503759D+01 
5 0 .~5S4787D+01 0 . 4 6 ~ 0 3 ~ 0 D + 0 1  0.5354~6~D+01 
6 0.2873609D+01 O.~a141~D+01 0.6240194D+01 
7 0.3340163D+01 0.5~6374D+01 0.704B~93D+01 
8 0 ,35367~3D+01 0.6258376D+01 0.7778734D+01 
9 0.3504092D+01 O. b544~O4"D+01 08380856D÷01 

I0 0.32536~2D÷01 O. 6878396D+01 0.909310bD+01 
11 0.2689757D+01 0.7190e39D+01. 0. I004412D+02 
12 0.2037759D+01 0.7268068D+01 O. I099079D+02 
13 O. 1809341D+01 0.73040~5D+01 O. I176754D+02 
14 O. 1877347D+01 0.73012t7D+01 O. 1~34515D+02 
~5 0.1534685D+01 0.7236410D+01 O. 1261369D+02 
16 0.9034708D+00 0.7~98014D+01 O. 1271545D+02 
17 0.~857896D+00 0 .73&9849D+01  0.12~5785D+OR 
18 -0.5512~26D+00 0.7109497D+01 0. I~97464D+0~ 
19 -0.12787~4D+01 0 . 6 ~ 2 8 4 1 8 D + 0 1  0.1259~8BD+02 
~0 0. I013350D+0! 0.5~35796D÷01 0.1233984D+02 
21 0 .549R491D+OI  0.4476e74D+01 0.12~8161D+02 
~R 0.4&15388D+01 0 .354198RD+01  0.1310988D+02 
23 -0.57360~3D÷00 0.2939353D+01 O. 1251041D÷OR 
~4 -0.~@659~4D÷01 0.393D484D+01 0. I089836D+0~ 
25 -0.4709215D÷01 0 . ' 5179097D+01  0.1059025D+0~ 
R6 -0.6870076D+01 0.395787~D÷01 0.121076~D+0~ 
R7 0.1455304D+00 0 .~76~7D+01 0.1~1455D+0~ 
~8 O. I~51891D÷OR 0.3393390D÷01 0.9163566D÷01 
29 0.9742811D+01 0.4491369D+01 0.51~0~00D+01 
30 -O.~Sb~265D÷01 0.2200686D+01 0.45~30&7D+01 
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Table 2. The convergence of the results (NT = total number of unknowns 

X NT K(SC) K(BCC) K(FCC) 

1.0 

0.95 

0.90 

0.85 

12 41.12 142.3 348.3 

27 42.14 162.1 362.1 

37 42,07 163.6 424.8 

48 42.07 160.0 437.9 

12 28.6 - 104.0 

27 27.7 70.3 150.0 

37 27.9 78~7 145.1 

48 27.9 78.7 152.3 

12 [ 9 . 2 2  6 7 . 0 0  

27 19.16 42.8 65.!3 

37 19.16 42.8 65.16 [ 

12 13.65 

37 13.64 25.81 34.6 

48 13.64 25.81 34.6 

Table 3. The dimensionless drag K for three cubic arrays 

SC BCC FCC 
K K K K K K 

× ( c o n v e r g e d )  (Eq .60 )  ( c o n v e r g e d )  (Eq .60 )  ( c o n v e r g e d )  (Eq .60)  

0.I 1.1646 1.1646 1.1861 1.1861 1.1924 1.1924 

0,2 1.3881 1.3881 1.4487 1.4487 1.4669 1.4669 

0.3 1.7000 1.7000 1.8331 [.8331 1.8741 1.8741 

0,4 2.1518 2.1518 2.4234 2.4234 2.5103 2.5103 

0.5 2.8420 2.8420 3.887 3.3836 3.57~8 3,5748 

0,6 3.9738 3.9738 5.1083 5.1083 5.5376 5.5376 

0,7 6.004 6.004 8.565 8.565 9.717 9.717 

0 . 8  10.O5 10 .06  16.9 16 .851 20 .9  20 .8  

0 . 8 5  13 .64  13.71 25 .8  25 .8  34 .6  34 .2  

0 , 9 0  19,16 19 .5  4 2 . 8  4 2 . 5  65.1 e l . 9  

0 , 9 5  27 .9  29 .8  78 ,7  7 6 . 8  i 52 125. 

1 .0 42 .1  50 .7  I()Z~:! [ 5 3 . 6  ~38+I0 283 .3  

functions to represent these solutions, as well as with the value k = 42.5 determined experi- 

mentally by Martin et al. (1951). In figure 1 the above results from the direct substitution 

method are given as a function of c. Also shown by dashed curves are the predictions from the 

series [1] and [49]. 

Body- and lace-centered cubic arrays 
The results for these cubic arrays are also given in tables 1 to 3. Here the series solution for 

K at X = 1 has not converged as yet, however,  unlike the case for the simple cubic array, 

oscillations are absent, at least, up to s = 30. Once again, the direct substitution method 
converged rapidly. Our results for. body-centered cubic arrays agree with those of Zick & 

Homsy (1981), who reported the value K = 163 for X = 1, as well as the value K = 170 found 

experimentally by Susskind & Becker (1967) for A" = 1. 
For the face-centered cubic arrays our results converged rapidly for X -< 0.95. For X equal to 

unity, however,  the convergence is slow as seen in table 2 which lists the computed values of K 
for N - 3. Unfortunately, round-off errors in the computations become significant for N greater 

than 3 and therefore a more accurate estimate for K was not obtained. At any rate, with N = 3 
the value K = 438 computed here agrees well with the values K = 435 reported by Zick & 

Homsy (1981) and K = 398 found experimentally by Martin et al. (1951). 
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The values thus calculated of K for closely packed cubic arrays allow us to obtain an estimate 
for the drag on a sphere in a closely packed random array if we assume that K depends only on 
Cm~ at X = 1. As mentioned by Batchelor & O'Brien (1977) Cm~x is approximately 0.62 for a 
random array of equal-sized spheres. Recalling that K equals 42, 162, and 438 for, respectively, 
simple, body-centered and face-centered cubic arrays for which the corresponding values of 
c~x are 0.52, 0.68 and 0.74, we find by interpolation that K - 87 for Cm~ = 0.62. This is in close 
agreement with the value K = 94, obtained by applying the well-known Blake-Kozeny cor- 
relation 

25 Cma x 
K = 3(I - Cm.x) 3 at Cm.x = 0.62. 

5. THE TWO-DIMENSIONAL ARRAYS 

The problem of slow flow through an array of infinitely long circular cylinders with their 
axes parallel to xraxis can be treated in a similar manner (Hasimoto, 1959). We consider here 
square and hexagonal arrays and assume that the mean flow is in the Xl-direction. The 
components of velocity in this case are given by 

1 [ , . , [o  a2S2~lU 02Sl] 
, ,  = Uo-  o , -  } ax---?-. I , 

1 a2S2 c~2Sl 

where the differential operators G and H are 

where 

and 

oo 02n 

G = X0 A. a,--?-;,., 

02n 

In order to determine A. and B. we expand SI and $2 near r = 0 

o o  

S1 = - 2 In r -  cl + *rr2 + ~. a,r 2" cos 2n0. 
TO n=2 

c l r ~  ' , r r  4 . ~ .  S~= r2(l-ln r)+ c2--~-~-~-~o. ~_2(a.r2 + b.)r2" cos 2nO 

r = (xl 2 + x22) 112, 0 = tan-I(xllX2), 

d. = a.14(2n + 1). 

Also, it can be shown that the coefficients a. and b. are given by: 

1 0 a + 21nr}] j 
0 

[62] 

[6a] 

[64] 

[65] 

[66] 

[67] 

[68] 

[69] 

[70] 
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where 
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_ 1 0 0 1 
b, 22,_,(2n),[Ge2"(-~xl,-~x2)ls2+~r21nr}]~=o [71] 

Ge"(xl, x2) = r" cos nO. [721 

Following a treatment analogous to that of the three-dimensional case, we find that the 
magnitude F'/IzU, the dimensionless drag force per unit length of a cylinder, equals 4zrAo and 

Uo = 1 + B0 [73] 
7o 

Substituting the expressions [66] and [67] for S~ and $2 into [62] and [63] and equating to 
zero the coefficients of Ge °, Ge 2, Ge 4 in ul and of sin 20 in u2 we obtain four equations in the 
four unknowns Ao, Ai, Bo, B~ which when solved yield 

47rlzU ¢l ~a2 ( Tr 2 ) 
F' = - In a - ~- + - -  - + 242bf a 4 - ro ~Zo 384 a2b2a 6 + 0(a8). [74] 

The basic vectors and the constants c~, a2, and b2 for the square and the hexagonal arrays 
are given in appendix 1. On substituting these constants into (74) we obtain 

1 
4zr/xU _ - ~ l n  c -0.738+ c -0.887 c2 + 2.039 c 3 +O(c 4) (square array), 

[75] 
F' ! ~ - ~ In c - 0.745 + c - c 2 + O(c 4) (hexagonal array), 

with 

c = 1ra2/ro. [76] 

We see that to 0(c), [75] agrees with Hasimoto's result [3]. 
Recently, the present authors (1982a) calculated F' via a numerical solution of the Stokes 

equation for the complete range of c for these two arrays. On comparing with these numerical 

results we find that [75] provides an estimate of F' to within 5% for c < 0.3. 
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APPENDIX 1: THE BASIC VECTORS AND THE CONSTANTS OF THE 
REGULAR ARRAYS OF SPHERES AND CYLINDERS. 

Cubic arrays 
(1)The basic vectors. The basic vectors and ~'o for the cubic arrays are (Hasimoto 0959)): 
(i) Simple cubic array 

a,,,] I(I,0,0)I bo, ] [(I,0,0)) 
a(2,~ = ~(0, I, 0)[, ~'0 = I, b,2)[ = ~(0, I, 0) I, [A.I] 
ao) J [(O,O,O)J bo) j [(0,0,1)} 

(ii) Body-centered cubic array 

I[ (1'I'-I)] 1 b'"] [(1,1,o)] 
a(2)( --~ J ( -  I, I, I)[, 70 =~, ba)[ =](0, I, I)[. 
ao)J [ (I, - I, l)J bo)J [(I,0, I)] 

(iii) Face-centered cubic array 

a~2)( = ~ | (0, 1, 1)[, ~-o = ~, b,2)[ = 1,1,1) . 
ao)J t (1,0,  l)J b(3)J [ ( l ,  - 1, 1) 

(2) Evaluation of the constants ~, at,. and bt,.. As shown by Hasimoto (1959) 

[A.2] 

[A.3] 

2_  ~ ~ 1 . ( ~r .~ _ ~_ ~. ~bo(~k2) ' 

( aim ~ = ~=2el(21)[(21 - 4m)! 0x1' 
bt= J (41)!(21+4m)! y ~  0 0 ~X 2" -:II S2-~ ~=o 

(¢o=I, ~" =2 for m>O), 

[A.4] 

[A.5] 
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where the constant a 
constant 8, of course, is independent of a) and ~b~(x) is the incomplete gamma function 

&(x)  = e-x¢ so, d~:. 

Further, ~b~(x) satisfies the recurrence relations 

4C = - &+,, x4~ = e --~ + v~ - t  

with 

A. S. SANGANI and A. ACPdVOS 

must be chosen so as to facilitate the subsequent calculations (the 

[A.63 

x~Tl" 
rko(X) = e 5x, &,/2(x) = ~ erfc(x/x). 

[A.71 

[A.8] 

Using [A.7] and [A.8], ~b's were calculated accurately to at least ten significant digits. Now, 
the constants at,. and bt,. can be evaluated from [A.5] using two different methods. The first 
method to be described below was used for l < 8 whereas the second was used for other values 
of I. 

(i) Ewald's technique. Again, as shown by Hasimoto (1959) 

e2 '(k.r, omo,,,[ ( -) 1 ~,  2, roa 3/2+~ ~, (b-,,,+a zr(r~r~) '  
*.,o kn = (m - 1)! . m 

+ ~ e 2rri(kn'r)~b"_l(rrakf)], [A.9] 
ka#O 

where 

{~ for the array of spheres [A.10] 
A = for the array of cylinders. 

Substituting for Sl and $2 obtained from [A.9] into [A.5] and simplifying we obtain 

aim TOa-(3/2)-2l E 4m Y21 (xl,, x2., x3.) 4~21-1/2 
'ro n~o 

+ ~ Y4'F (k,., k2., k3.)C~o(Trak.2)], [A.l 1] 
kn~O 

4zrro ro o/2)-21 n~o ~ '  d),_t <3/2) Y2~ (xj., x2°, x3.) 

+ ~ Oo(zrak.2) y4~ (k~., k2,. k3,)], [A.12] 
kn=0 

where 

(21+4m)! (21 +4m)!  
&m - E, , (2/ -4m)!  al,, and /~t,, E,,(2I - 4m) blm. 
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The sums in the above equation converge very rapidly. Thus ~ and/~,, (1-< 8) could be 
determined to seven significant digits with In[ < 5. For l > 8, however, the incomplete gamma 
functions could not be evaluated with sufficient accuracy. 
(ii) The direct sum method. Using [25] and the fact that the average values of S, over a unit cell 
is zero, it can be shown that 

/~Z_ ~ lf,. d r ' / 1  Sl(r) = INim [,.~N. 1 -~o Jr- r'lJJ A.131 

where ~-, is the unit cell situated at r, except for the unit cell containing r. A sphere of radius 
e(e-~0) is excluded from % in that case. Substituting [A.13] into [A.5] and simplifying we 
obtain 

lu~N y~? (xl=, xen, x3.) 
~lm = lim ~ . ,  r~l+l [A.14] 

Similarly it can be shown that 

[A.15] 
l=[*o r~ - J 

Note that the above expression for at0 is identical to the sum Set in Rayleigh's (1892) theory 
on the effective conductivities of composite materials consisting of cubic array of spheres plus 
a continuous homogeneous matrix of different conductivity. [AI4] and [A.15] are particularly 
useful for determining ~s~, and/~,~ when I is large. 

The first few values of dtm,/~,~ and ~ are listed in table 4. As mentioned earlier, for l > 8, the 
direct sum method was employed exclusively. In fact, this method gives fairly accurate results 
even for smaller values of / .  Thus, we have also calculated am and bra's for l between 4 and 8 
and found that in this range both methods agreed to at least five significant digits. 

Table 4. The computed values of the constants 

SC BCC FCC 

0. 2837297D+I 0. 3639233D+I 0.45848621)+1 

a20 0.31082271>+1 -0. 3106460D+I -0. 7525692D+I 

a30 0.57332931}+0 0.5446557D+I -0. 2663489D+2 

a40 0.32592931)+1 0. 7648391D+I 0. 8118646D+2 

~41 0.54756121>+4 0.1284930D+5 0.1363932D+6 

~42 0.854184919+7 0.20044901)+8 0.21277351)+9 

a50 0. I009224D+I -0.9396657D+I -0.1524345D+I 

~51 -0. II19028D+5 0. I041901D+6 0.16901941}+5 

-~52 -0.6848449D+8 0.6376436D+9 0.10343991>+9 

520 -0.1945688D+0 0. I199684D+0 0. 2133181D+0 

b30 -0.1966601D-I -0.1862257D+0 0. 5825414D+O 

b40 -0.1145416D+0 -0. 2197556D+0 -0.1384665D+I 

"541 -0.1924301D+3 -0. 3691894D+3 -0.232624219+4 

~42 -0. 3001910D+6 -0.5759355D+6 -0. 3628937D+7 

b50 -0. 2625465D-I O. 1787547D+0 -0.1577060D-2 

~651 0. 2911115D+3 -0.1982033D+4 0.1748615D+2 

~52 O. 1781602D+7 -0.1213004D+8 0. I070152D+6 
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McPhedran & McKenzie (1978) have also calculated alo for the simple cubic array. The 
values reported here are in complete agreement with those reported by these authors who 

evaluated these constants to five significant digits. Our values for b2o and 6 agree with 
Hasimoto's (1959) except for the simple cubic array where, as pointed out by Zuzovski (1976), 
the value of b2o stated by Hasimoto has a sign error. 

Two-dimensional arrays 
(1) The basic vectors. (i) Square array 

a(,)/ = /(1, 0)] ~ 
a(2)J I.(0, l)J '  Zo = 1, 

(ii) Hexagonal array 

b,,, / 
h(2)J = ((0, 1) " [A.16] 

a"' = _, b,2,j a,2, 
2 ' 2 l  

- 1  

0,~3 
(2) The constants c~, a:, and b2. The constant c~ is given by (Hasimoto (1959)) 

Cl = Y + In ¢r + a - - - a  "r 0 n~*oZ q~-I \ - - ~ ' - / -  ~o k 7  0= t~0('/rotka2), 

where y = 0.577215... is Euler's constant. 

Following a treatment analogous to that for the three dimensional case, we find that 

a(2~r)Zt [ G.Z,, x . ( - ~ - )  at = 22H(2/)!Zo Zoa t-2t ~ ~ i in, X2n) (~-l+2l 
a ~ 0  

~. Ge21( kl., kE.)qbo( Trakn2) ]. 
kn:~0 

(q) = - °t:(2"tr)2/ roO~ -1-21 ~ Ge2t(xln, x2,)&2+zt 
b! .rr~.o221+1(21) ! 

+ ~. Ge 2t (kl., k2.)~l(Trak~2)]. 
ku=0 

The computed values are (i) Square array 

[A.17I 

[A.18] 

[A.19] 

{ c~ =2.621 (Hasimoto (1959)) 
a2 1.576. 
b2 1.664 

[A.211 

(ii) Hexagonal array 

cl = 2.779 [A.221 
a2 = b2=0"  

In fact, as shown by Perrins et al. (1979) due to symmetry, a, = b, = 0 for all n not divisible by 3. 
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where 

APPENDIX 2: RESULTS ON THE DIFFERENTIATION OF 
THE VARIOUS TERMS IN St AND $2 

The following results for spherical harmonics are taken from Hobson 0937), p. 138 

a"-" [(.~)" (~.~)"]1 (-l)"-"(n-m), 
OXl n-m + - r = 2m-tr zn+l y m, 

24 (n + m - k)! ~,-~-k, 

[A.231 

[A.24] 

MF Vol. 8, No. 4--D 

f ( - 1 y  (n+m)[  o 
I TC-(n+m_2A_k)[ ior  A<m 

B = |  (_l)m (n + m)[ o . [A.25] 
~ <-;=-m=~S! 1or A > m. 

Further, using the theorem stated by Hobson (1937), p. 127 

axe' £3  Ff rb  = [z 

+2 "-2 d , - IF  
-~-.~ ~ V 2 + ' " }  f, (xl, x2, x3) [A.261 

where f,  is a homogeneous polynomial of degree n in xl, x2 and x3 and taking F( r  2) = r, it can be 
shown that 

(_aa~ ~-" a m a m 
0X1/ [ ( ~ ) +  ( -~)  ]r =(- l )" -m(n-m)[  " m 

In deriving [A.27] use has also been made of the series representation for the spherical 
harmonics (Hobson (1937), p. 137) 

( -  1)m(2n)! ¢1=m + ~m)(x~_m (n-- m)(n - m 
Y~m=2"+'n!(n-m)!'~ 2 - ~  --- i) - 1) r2x~ + ' " ) "  [A.28] 

The above series representation can also be employed to derive the formulae: 

= ~1 [f(-l)"-m-"(n-m-P)[2 m+"-I Y~'+" + ( -1)"-m(n-m+P)!2m+,-~ Y~'-°)}(m>~p), [A.291 

0 k (n+m)[ (4n +6) ,u 
ax? (r~ r'm) = (n + m -~)!  (4n Ygz-~k) - r ,% 

(n+m)! ~f(n-m+2)!  (4n+6)(n+2-m-k) !  [ 
+ (n +~-+-2-  k)! I. (n - m)[ - (4n  + 6-4k)(n  - m - k)[J Y,,"-k+2 [A.301 
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. . .  + (r 2 ii,.,) = Ar 2 vl*~,.t + B - .+2- ,  a n - A  

1 4n+6  
4 2* 4n + 6 - 4A r2 m+A 

Y n - *  - 
a(n+m)! { 

2,_2(n + m +2) ! m+a- )  
( n + 2 - m - 2 A ) !  1 } .,+, 

( n - m - 2 * ) !  4 n + 6 - 4 £  Y.+2-*, 

[A.31] 

where 

{ _{_- l~(n +_ m)! (4n_+~ 
A =1 2*(n + m -2A)! (4n + 6 -  4A) 
"- [ ( -1)~(n+m)!  (4n+6) 

L 2-~-~--;,~ ~ - - ~ ~  

for m->a 

for m < A, 
[A.321 

=] 2 , ( n ( - - ~ l m ~ 7 ~ ; 2 m ) ~ + ~ - ~ _ ) 4 A ) f o r  m >A 

B [(-1)"(n+m)!(-ga)f.. .+  ( n + 2 +  m - 2 a ) !  ] 
{ 2--~75=-~. Ira-m) (n+m-2a)!(4n+6-4a)~. for a > m .  

[A.331 

In above relations, the coefficient of Y," must be set equal to zero for m > n. 


